
1

CMSC 350 Project 2

The second programming project involves writing a program that accepts an arithmetic

expression of unsigned integers in postfix notation and builds the arithmetic expression tree that

represents that expression. From that tree, the corresponding fully parenthesized infix expression

should be displayed and a file should be generated that contains the three address format

instructions. This topic is discussed in the week 4 reading in module 2, section II-B. The main

class should create the GUI shown below:

The GUI must be generated by code that you write. You may not use a drag-and-drop GUI

generator.

Pressing the Construct Tree button should cause the tree to be constructed and using that tree, the

corresponding infix expression should be displayed and the three address instruction file should

be generated.

The postfix expression input should not be required to have spaces between every token. Note in

the above example that 9+- are not separated by spaces.

The above example should produce the following output file containing the three address

instructions:

Add R0 5 9

Sub R1 3 R0

Mul R2 2 3

Div R3 R1 R2

It is not necessary to reuse registers within an expression as shown in module 2, section II-B, and

you can assume there are as many available as needed. Each new expression should, however,

begin using registers starting at R0.

Inheritance should be used to define the arithmetic expression tree. At a minimum, it should

involve three classes: an abstract class for the tree nodes and two derived classes, one for

operand nodes and another for operator nodes. Other classes should be included as needed to

accomplish good object-oriented design. All instance data must be declared as private.

You may assume that the expression is syntactically correct with regard to the order of operators

and operands, but you should check for invalid tokens, such as characters that are not valid

operators or operands such as 2a, which are not valid integers. If an invalid token is detected a

2

RuntimeException should be thrown and caught by the main class and an appropriate error

message should be displayed. Below is an example:

You are to submit two files.

1. The first is a .zip file that contains all the source code for the project, which includes

any code that was provided. The .zip file should contain only source code and nothing

else, which means only the .java files. If you elect to use a package the .java files

should be in a folder whose name is the package name.

2. The second is a Word document (PDF or RTF is also acceptable) that contains the

documentation for the project, which should include the following:

a. A UML class diagram that includes all classes you wrote. Do not include

predefined classes. You need only include the class name for each individual

class, not the variables or methods

b. A test plan that includes test cases that you have created indicating what aspects

of the program each one is testing

c. A short paragraph on lessons learned from the project

3

Grading Rubric:

Criteria Meets Does Not Meet

Design

5 points 0 points

GUI is hand coded and matches
required design (1)

GUI is generated by a GUI generator or
does not match required design (0)

Inheritance hierrachy with at least
3 classes is used (2)

Inheritance hierrachy not used or has less
than 3 classes (0)

Other classes are used to support
good object-oriented design (1)

Does not use other classes to support
good object-oriented design (0)

All instance data is private (1) Some instance data is not private (0)

Functionality

10 points 0 points

Produces correct fully
parenthesized infix expressions for
all input (3)

Does not produce correct fully
parenthesized infix expressions for some
input (0)

Produces correct three address
file for all input (3)

Does not produce correct three address
file for some input (0)

Correctly parses expressions
without space delimiters (2)

Does not correctly parse expressions
without space delimiters (0)

Registers restart at R0 on each
new expression (1)

Registers do not restart at R0 on each
new expression (0)

Detects invalid tokens (1) Does not detect invalid tokens (0)

Test Cases

5 points 0 points

All operators included in test cases
(2)

Some operators not included in test cases
(0)

Test cases include expressions
without spaces (1)

Test cases don't include expressions
without spaces (0)

Test cases include a case to test
invalid token beginning with a
digit (1)

Test cases do not include a case to test
invalid token beginning with a digit (0)

Test cases include a case to test
invalid operators (1)

Test cases do not include a case to test
invalid operators (0)

Documentation

5 points 0 points

Correct UML diagram included (2) Correct UML diagram not included (0)

Lessons learned included (2) Lessons learned not included (0)

Comment blocks with class
description included with each
class (1)

Comment blocks with class description
not included with each class (0)

Overall Score
Meets Does not meet

16 or more 0-15

